Evolution of Covariance Functions for Gaussian Process Regression Using Genetic Programming
نویسندگان
چکیده
In this contribution we describe an approach to evolve composite covariance functions for Gaussian processes using genetic programming. A critical aspect of Gaussian processes and similar kernel-based models such as SVM is, that the covariance function should be adapted to the modeled data. Frequently, the squared exponential covariance function is used as a default. However, this can lead to a misspecified model, which does not fit the data well. In the proposed approach we use a grammar for the composition of covariance functions and genetic programming to search over the space of sentences that can be derived from the grammar. We tested the proposed approach on synthetic data from two-dimensional test functions, and on the Mauna Loa CO2 time series. The results show, that our approach is feasible, finding covariance functions that perform much better than a default covariance function. For the CO2 data set a composite covariance function is found, that matches the performance of a hand-tuned covariance function.
منابع مشابه
Random regression models for estimation of covariance functions of growth in Iranian Kurdi sheep
Body weight (BW) records (n=11,659) of 4961 Kurdi sheep from 215 sires and 2085 dams were used to estimate the additive genetic, direct and maternal permanent environmental effects on growth from 1 to 300 days of age. The data were collected from 1993 to 2015 at a breeding station in North Khorasan province; Iran. Genetic parameters for growth traits were estimated using random regression test-...
متن کاملGaussian Process Regression Using Spatial-Temporal covariance: Research on Sea Level Prediction
It is only recent that researcher have become to realize the importance of sea level prediction. By studying the global and local sea level, we can provide critical information about the relations between the Earth’s climate or atmosphere and our oceans. In this paper, I use Gaussian Process Regression with spatial-temporal covariance for sea level prediction. I conducted experiments on a publi...
متن کاملGaussian Process Regression Models for Predicting Stock Trends
Historical stock price data is a massive amount of time-series data with little-to-no noise. From all this relatively clean data it should be possible to predict accurate estimates of future stock prices. A number of different supervised learning methods have been tried to predict future stock prices, both for possible monetary gain and because it is an interesting research question. Examples o...
متن کاملAn enhanced reliability-oriented workforce planning model for process industry using combined fuzzy goal programming and differential evolution approach
This paper draws on the “human reliability” concept as a structure for gaining insight into the maintenance workforce assessment in a process industry. Human reliability hinges on developing the reliability of humans to a threshold that guides the maintenance workforce to execute accurate decisions within the limits of resources and time allocations. This concept offers a worthwhile point of de...
متن کاملCorrigendum to "Solving Dynamic Traveling Salesman Problem Using Dynamic Gaussian Process Regression"
This paper solves the dynamic traveling salesman problem (DTSP) using dynamic Gaussian Process Regression (DGPR) method. The problem of varying correlation tour is alleviated by the nonstationary covariance function interleaved with DGPR to generate a predictive distribution for DTSP tour. This approach is conjoined with Nearest Neighbor (NN) method and the iterated local search to track dynami...
متن کامل